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ABSTRACT

This study explores the potential predictability of the Southern Ocean (SO) climate on decadal time scales

as represented in the GFDL CM2.1 model using prognostic methods. Perfect model predictability experi-

ments are conducted starting from 10 different initial states, showing potentially predictable variations of

Antarctic bottom water (AABW) formation rates on time scales as long as 20 years. The associated Weddell

Sea (WS) subsurface temperatures and Antarctic sea ice have potential predictability comparable to that of

the AABW cell. The predictability of sea surface temperature (SST) variations over the WS and the SO is

somewhat smaller, with predictable scales out to a decade. This reduced predictability is likely associatedwith

stronger damping from air–sea interaction. As a complement to this perfect predictability study, the authors

also make hindcasts of SO decadal variability using the GFDL CM2.1 decadal prediction system. Significant

predictive skill for SO SST on multiyear time scales is found in the hindcast system. The success of the

hindcasts, especially in reproducing observed surface cooling trends, is largely due to initializing the state of

theAABWcell. Aweak state of theAABWcell leads to cooler surface conditions andmore extensive sea ice.

Although there are considerable uncertainties regarding the observational data used to initialize the hind-

casts, the consistency between the perfect model experiments and the decadal hindcasts at least gives some

indication as to where and to what extent skillful decadal SO forecasts might be possible.

1. Introduction

Climate variability can be generated by both internal

interactions and external forcing (Latif et al. 2013). The

former refers to interactions within or between the in-

dividual climate system components that include atmo-

sphere, ocean, land, and sea ice, while the latter points to

responses to changes in anthropogenic greenhouse gas/

aerosol concentration as well as variations in solar ir-

radiance and volcanic eruptions. The El Niño–Southern
Oscillation (ENSO; Philander 1990), the Pacific decadal

oscillation (PDO; Mantua et al. 1997; Kwon and Deser

2007; Zhang and Delworth 2015, 2016a), the Atlantic

multidecadal oscillation (AMO; Knight et al. 2005;

Delworth and Mann 2000), and the Southern Ocean

(SO) decadal to centennial variability (Martin et al.

2013; Latif et al. 2013; O’Kane et al. 2013; Le Bars et al.

2016) are typical examples of internal variability.

Internal climate fluctuations can sometimes strongly

project onto global or regional climate change, thereby

masking the effects of external forcing. These internal

variabilities are also quite different in different climate

models in terms of time scale and spatial structure, es-

pecially over the SO (Monselesan et al. 2015).

Over the most recent two decades, the SO SST has

shown a broad cooling (e.g., Purkey and Johnson 2010,

2012; Zhang et al. 2017), along with an expansion of

Antarctic total sea ice area (e.g., Comiso and Nishio

2008; Cavalieri and Parkinson 2008) despite highly re-

gional heterogeneity (e.g., Holland and Kwok 2012;

Matear et al. 2015). However, climate models forced

with historical changes in radiative forcing typically do

not reproduce the observed cooling around the Ant-

arctic. Instead, they show a slow but steady SO warming

and total Antarctic sea ice area loss (Purich et al. 2016).

Potential explanations for the discrepancy between

observations and model projections are that the Ant-

arctic ice sheet meltwater is absent in climate modelsCorresponding author: Liping Zhang, liping.zhang@noaa.gov
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(Bintanja et al. 2013, 2015) or the natural internal vari-

ability plays a large role (Zunz et al. 2013; Polvani and

Smith 2013). It is therefore of great importance to un-

derstand the detailed dynamics and predictability of

internal variability over the SO.

In the instrumental period, the SO SST exhibits a

pronounced multidecadal internal variability (Latif

et al. 2013; Monselesan et al. 2015), albeit with some

uncertainties due to short observation records. Themost

recent warm phase of this multidecadal variability co-

incides with a prominentWeddell polynya event (1974–76)

that displayed a large area of open water within the

ice-covered Weddell Sea and was accompanied with

strong deep convection (e.g., Gordon 1978, 1982). This

potential linkage between the SO multidecadal vari-

ability andWeddell Sea deep convection in observations

also appears in fully coupled climate models (e.g.,

Martin et al. 2013; Galbraith et al. 2011; Zhang and

Delworth 2016a,b). Martin et al. (2013) suggested that

the SO internal multidecadal variability in the Kiel

Climate Model (KCM) is mainly driven by the Weddell

Sea deep convection; in addition, they attributed the

multidecadal time scale to the slow accumulation of heat

advected into theWeddell Sea at middepth by the lower

limb of the Atlantic meridional overturning circulation

(AMOC). Similar variability, including characteristics

and mechanisms, is found in the Geophysical Fluid

Dynamics Laboratory Climate model, version 2.1

(GFDL CM2.1).

Considering the unforced or internal predictability of

the system, the pronounced low-frequency multidecadal

variability over the SO mentioned above corresponds

to a large value of potential predictability variance

fraction (ppvf; Boer 2004, 2011). However, SO pre-

dictability/prediction has received less attention com-

pared to the North Atlantic and North Pacific Oceans,

partly due to the lack of observations, especially in the

subsurface ocean. Given this reason, we used a di-

agnostic approach [averaged predictability time (APT);

DelSole and Tippett 2009] to identify the most pre-

dictable components of decadal SST variations over the

SO in a 4000-yr control simulation of the GFDL CM2.1

model. We found that the most predictable component

is closely related to the mature phase of a mode of

internal variability in the SO that is associated with

fluctuations of deep ocean convection, which has a sig-

nificant predictive skill as long as 20 years. The second

most predictable component has a significant predictive

skill up to 6 years and is associated with a transition

between phases of the dominant pattern of SO internal

variability. The current paper is a follow-up study of

our previous work, which continues to examine the

SO climate predictability but changes from a diagnostic

perspective to a prognostic perspective. In the prognostic

approach, the SO predictability is estimated with so-

called perfect model ensemble experiments. The fully

coupled atmosphere–ocean general circulation model

(AOGCM) is initialized by identical oceanic and

perturbed atmospheric conditions. We further extend

this method to decadal hindcasts/forecasts that are ini-

tialized with reanalysis data/observations, although past

observations of the SO are sparse. The prediction skill

is assessed by analyzing how well the time evolving var-

iables produced by the initialized model match the

observations.

2. Model, experiments, and methods

a. ‘‘Perfect model’’ predictability experiments

The model we use is the Geophysical Fluid Dy-

namics Laboratory Coupled Model version 2.1

(Delworth et al. 2006). The atmospheric component,

AM2.1, has a horizontal resolution of 28 3 28 with

24 levels in the vertical. The ocean and ice models,

MOM4, have a horizontal resolution of 18 in the ex-

tratropics, with meridional grid linearly decreasing to
1/38 near the equator. The ocean model has 50 levels in

the vertical, with 22 evenly spaced levels over the top

220m. A 2000-yr control simulation is conducted with

atmospheric constituents and external forcing held

constant at 1860 conditions (this is conducted on

a recently installed supercomputer and used in this

study; we also have a 4000-yr simulation conducted on

an older machine).

From the last quasi-equilibrium 500 years of the

control run, 10 different years are randomly selected

and used as initial conditions to perform the so-called

perfect model ensemble experiments. Each ensemble

consists of 10 members with perturbed atmospheric

states but with the same oceanic initial conditions. We

generate the perturbed atmospheric states by taking

the atmosphere from different years in the control

run excluding the current year. Note that these oce-

anic and atmospheric initial conditions are purely

from the model. Each experiment integrates forward

for 30 years. These ensemble experiments are re-

ferred to as predictability experiments. The spread

within the ensemble is interpreted as an estimate of

predictability.

The normalized ensemble variance (NEV) (Griffies

and Bryan 1997) and prognostic potential predictability

(PPP) (Pohlmann et al. 2004) are used to quantitatively

estimate the potential predictability of climate variable

X over the SO. The NEV as a function of the prediction

period t is defined as
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where Xij is the ith member of the jth ensemble, Xj(t) is

the jth ensemble mean, N is the number of ensemble

(N5 10),M is the number of members that also include

the control run (M 5 11), and s 2 is the variance in the

control experiment. The PPP then has a form of

PPP5 12NEV. (2)

PPP amounts to a value of 1 for a perfect predictability

and a value of 0 when the ensemble spread equals the

variance from the control integration. The statistical

significance ofNEV and PPP is estimated by the F test as

suggested by von Storch andZwiers (1999). The damped

persistence based on a red noise null hypothesis is also

used for comparison. The NEV and PPP of a hypo-

thetical ensemble generated by stochastic process are

given by 12 e22[(12a)/(11a)] t and e22[(12a)/(11a)] t (Griffies

and Bryan 1997), respectively, where a is the lag-1 au-

toregressive coefficient of variable X.

In comparison with PPP, we also calculate the di-

agnostic potential predictability (DPP), which is defined

as a fraction of long time scale (or low frequency) vari-

ability with respect to the total variability (s2
L/s

2) (Boer

2004); s2
L is the variance of them-yr mean SST, wherem

can be selected as any integer number (we selectm to be

10, 20, and 30 in the present paper). The high DPP re-

gions identify those areas in which long time scale var-

iability stands out clearly from short time scale

variability, and thus variability in these regions may be

at least potentially predictable.

b. Decadal prediction experiments

The CM2.1 decadal prediction experiments (e.g.,

Yang et al. 2013) are initialized by the GFDL ensemble

coupled data assimilation (ECDA) system (Zhang et al.

2007). ECDA applies the ensemble adjustment Kalman

filter (Anderson 2001) to the fully coupled climate

model CM2.1. The atmosphere assimilates the NCEP

atmospheric analysis (Kalnay et al. 1996) and the ocean

assimilates observations of SST from satellite [optimum

interpolation SST (OISST)] and temperature and sa-

linity from theWorld Ocean Database 2009 (Boyer et al.

2009), which includes profiles from expendable bathy-

thermograph temperature (XBT) and Argo profiles af-

ter year 2000. Ten-member ensemble decadal hindcasts

were initialized on 1 January every year from1961 to 2016

and integrated for 10 years. These experiments include

the effects of changing radiative forcing from anthropo-

genic and natural sources. We also run a 10-member

ensemble of simulations using the same model with the

same radiative forcing, but without initialization. The

ensemble mean response of these uninitialized histor-

ical simulations can be taken as the externally forced

response.

The CM2.1 predictions use a full-field assimilation

method and have a systematic model drift due to model

bias, common to many other models (Smith et al. 2013).

We therefore subtract the lead-time-dependent clima-

tology from each variable in the hindcast simulations,

which effectively removes the climate drift [see details in

Yang et al. (2013)]. Our primary interest is in the pre-

diction skill from internal decadal variations in the SO.

To distinguish internal variability from externally forced

variations, we subtract the historical ensemble mean

forced response from both the hindcasts and the output

of the ECDA. In addition to the ECDA reanalysis, we

also use several observational datasets for evaluating

prediction skill, including the Extended Reconstruction

Sea Surface Temperature (ERSST) analysis version 3b

(Smith and Reynolds 2004), the UK Met Office Hadley

Centre’s Sea Ice and Sea Surface Temperature dataset

(HadISST; Rayner et al. 2003), the National Centers for

Environmental Prediction (NCEP) atmosphere re-

analysis (Kalnay et al. 1996), and the Goddard Institute

for Space Studies (GISS) surface temperature analysis

for the globe (Hansen et al. 2001).

We use the traditional correlation and mean square

skill score (MSSS) (Goddard et al. 2013) to measure the

prediction skill. The MSSS is defined as

MSSS5 12
�
n

(O
n
2H

n
)2

�
n

(O
n
2O)2

, (3)

where On and Hn are the observation and hindcast

predicted values for the nth year, respectively, and O is

the climatological mean value of observation. TheMSSS

has a value of one for a perfect prediction and becomes

negative when the hindcast error is larger than the error

of a prediction using observed climatology.

3. Multidecadal variability over the Southern
Ocean

In the GFDL CM2.1 model, the internal multidecadal

variability over the SO is dominated by fluctuations in

the Weddell Sea (WS) deep convection (Zhang and

Delworth 2016b). The deep convection status can be

well represented by the strength of the Antarctic Bottom

Water (AABW) cell. Figures 1a and 1b show the global

meridional overturning circulation (GMOC) stream-

function in depth space and density space, respectively.
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Note that our model calculates the streamfunction in

density space online, which considers high-frequency

information and does not do any approximation. The

negative streamfunction south of 608S denotes the anti-

clockwise AABW cell. Here, the AABW cell strength

index is defined as the absolute value of the minimum

streamfunction across 678S section where is the location

of maximum long-termmean overturning. The long-term

mean AABW cell in depth space is approximately 8Sv

(1Sv [ 106m3 s21) using this definition, while it is much

stronger in density space with a value of approximately

23Sv that is within the range of observed estimates

(;20Sv; Lumpkin and Speer 2007). The AABW cell in-

dex in the last 500 years of the control integration shows

pronounced multidecadal variability in both depth and

density spaces, with peak periods around 60–120 years

(Figs. 1c,d). These internal low-frequency fluctuations are

also seen from the AABW cell time series (Fig. 1e). Al-

though the AABW cell magnitude in density space is

more realistic than in depth space, their time series are

almost in phase (not shown). The overlapping red points

in Fig. 1e denote the starting years of perfect pre-

dictability experiments. Some experiments start from a

year corresponding to relatively weak AABW cell

FIG. 1. Long-term mean global meridional overturning circulation (GMOC) streamfunction in (a) depth space

and (b) density space. Unit is Sv. Power spectrum of the normalized Antarctic bottom water (AABW) cell index

defined as the absolute value of minimum streamfunction across 678S section in (c) depth and (d) density spaces,

respectively. The blue line indicates the 95% significance level based on the red noise null hypothesis. (e) Annual

mean time series of the AABW cell index in density space from year 1200 to 2000 (blue line) with starting points of

‘‘perfect ensemble’’ predictability experiments shown as red dots. The green line denotes the 25-yr low-pass filtered

AABW cell index, while the dashed black line denotes the 800-yr mean of the AABW cell index. Unit is Sv.
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conditions (years 1610, 1870, and 1940), some from

strong conditions (years 1640, 1660, 1750, 1855, and

1905), and some from intermediate conditions (years

1755 and 1945).

Figure 2 shows the impact of multidecadal AABW

cell fluctuations on the SST, subsurface temperature,

and sea ice. Associated with a stronger-than-normal

AABW cell (Fig. 2a), the SST shows a broad warming

anomaly over the SO, with maximum value over theWS

(Fig. 2b). This is consistent with our physical un-

derstanding: the spinup of the AABW cell is associated

with increased vertical convection, which brings SO

subsurface warm water to the surface and thereby leads

to positive (negative) temperature anomalies at the

surface (subsurface) (Fig. 2c). The warm surface water

reduces the sea ice concentration around the Antarctic

(Fig. 2d). The opposite is also established when the

AABW cell spins down.

4. Prognostic potential predictability using perfect
ensemble approaches

a. Decadal predictability of the AABW cell

We show in Fig. 3 the AABW cell predictability for

the 10 sets of the 10-member ensembles. We identify the

experiments by the year at which initial conditions are

taken from the Control simulation—the years listed are

from the Control simulation, and have no relationship to

calendar years. Experiments for years 1610, 1870, and

1940 (Figs. 3a, 3g, and 3i, respectively) start from the

mature negative phase of the AABW cell index. Using

the long-term mean AABW cell index in control run

(yellow line in Fig. 3) as a reference to depict below-,

near-, and above-normal AABW cell strength, we can

see that the ensemble means in those panels (red line in

Fig. 3) tend to follow the AABW cell variations of the

respective control run (blue line in Fig. 3) for almost

three decades. The predictability starting from year 1870

(Fig. 3g) seems to be the largest among three cases, due

to its small ensemble spread. The ensemble spread is

relatively small before year 1885 and gradually increases

thereafter. In contrast, the ensemble spread does not

change very much after the initial 5 years in the 1940

case. In the 1610 case, the ensemble spread increases

much faster and earlier than that in the 1870 case. The

above diversity suggests that the predictability more or

less depends on the AABW cell initial state.

Figures 3b, 3c, 3d, 3f, and 3h display the AABW cell

predictability initialized from its stronger-than-normal

status. Again, all ensemble means track the initial

FIG. 2. Climate variability over the Southern Ocean (SO). Regressions of (a) the GMOC (Sv) in density space,

(b) SST (8C), (c) zonal mean temperature profile (8C), and (d) sea ice concentration (100%) against the normalized

AABW cell index. The shading only shows values significant at 95% significance according to a Student’s t test.
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control run relatively well, although with less variability

due to averaging effect. In particular, the 1855 case has

the highest predictability, in which the ensemble mean

almost overlaps the control run in the first two decades

with small ensemble spread. In the 1640 case, the en-

semble mean keeps the positive phase of AABW cell for

almost the whole prediction period, in agreement with

the control run. In the rest of the three experiments, the

FIG. 3. AABW cell index (density space) trajectories in the control run (bold blue line, starts 5 years from the

beginning of the ensemble run) and in the perfect ensemble predictability experiments (10 thin colored lines)

initialized in 1 January of year (a) 1610, (b) 1640, (c) 1660, (d) 1750, (e) 1755, (f) 1855, (g) 1870, (h) 1905, (i) 1940,

and ( j) 1945. The bold yellow line denotes the long-term mean AABW cell index averaged in the last 500 years in

the control run. Unit is Sv. (k) Normalized ensemble variance (NEV) and (l) prognostic potential predictability

(PPP) averaged over 10 ensemble experiments (bold red line), alongwith the red noise null hypothesis (dashed blue

line). The dashed black horizontal line denotes the 95% significance level.
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perfect ensemble experiments basically capture the

AABW cell transition from the positive phase to the

negative phase, but with a relatively large ensemble

spread compared to the 1855 and 1640 cases.

We finally show in Figs. 3e and 3j the AABW cell

predictability starting from intermediate conditions.

Case 1755 initializes from an intermediate condition as

the AABW cell transits from the positive phase to the

negative phase. In the first 5 years, the ensemble mean

matches the control run very well with a small ensemble

spread. After that, the ensemble mean gradually de-

viates from the control run and the ensemble spread

increases as well. For case 1945, the AABW cell starts

from an average condition that coincides with a transi-

tion from negative phase to positive phase. Although the

10 ensemble means track the control run fairly well for

the entire prediction period (30 yr), the ensemble spread

is quite large even at the beginning. These results sug-

gest that forecasts starting from intermediate conditions

of natural internal variability of AABW cell seem to be

less skillful than those initialized frommature phases. A

caveat is that the limited number of experiments may

limit the robustness of this demonstration. However,

this preliminary claim is consistent with the argument

proposed by Zhang et al. (2017, manuscript submitted to

J. Climate), who used a diagnostic APT method to ex-

amine the SO SST predictability.

To get a quantitative estimate of the potential pre-

dictability of the AABW cell, the averaged skills (NEV

and PPP) from 10 start dates as a function of lead time

up to three decades are exhibited in Figs. 3k and 3l. The

NEV of the AABW cell index indicates a statistically

significant predictability up to 23 years. The ensemble

variance increases more slowly than the red noise null

hypothesis, suggesting that predictability exceeds that

predicted by the damped persistence forecast. Accord-

ingly, the PPP shows a decreasing skill as the lead time

increases, with a loss of predictability after about

23 years. The PPP also exhibits better skill than that of

damped persistence. The PPP value averaged over the

first decade is as high as 0.72, which decreases to 0.5 in

the second decade. The AABW cell predictability here

is mainly attributed to its oscillatory characteristics

(Figs. 1c,d).

b. Decadal predictability of the AABW cell
fingerprints

The AABW cell, mainly representing deep ocean

signals, is very difficult to observe on long time scales,

therefore limiting the ability to validate model pre-

dictions. In the CM2.1 model, a stronger-than-normal

(weaker-than-normal) AABW cell is accompanied by

a broad SST warming (cooling) over the SO, with

maximum anomalies over the WS (Fig. 2b). Thus, SST

anomalies averaged over theWS (758–558S, 528W–308E)
and SO (708–508S, 08–3608E), which are relatively easier

tomonitor, can be used as fingerprints of theAABWcell

variations. We describe the SST trajectories in cases

1870, 1905, and 1945 (Figs. 4a–c and 4e–g), as they are

typical examples initialized from below-, above-, and

near-normal AABW cell strengths. Similar conclusions

hold for the other seven ensembles. Figures 4a–c show

that the ensemble means of the WS averaged SST track

the variations of the control run in all three cases, with

variations that mirror those of the AABW cell. This

implies that theWS SST is predictable when the AABW

cell is predictable. A close inspection finds that the SST

trajectories are noisier than those of the AABW cell (cf.

Figs. 3 and 4). This is not surprising, since SST is more

affected by the high-frequency atmosphere forcing and

radiative effects. The corresponding PPP calculated

from 10 ensemble sets shows a statistically significant

skill on time scales of about 15 years, which is shorter

than the AABW cell (Fig. 4d).

Similarly, the SO area averaged SST predicted from

the perfect ensemble experiments basically tracks the

control run fluctuations (Figs. 4e–g), particularly the

ensemble means. The SO SST has weak predictability

based on PPP (Fig. 4h), which is also implied from the

large ensemble spread. Figure 4h shows that the PPP

has a value as high as 0.8 in the first 5 years, but then

quickly drops to 0.3 around the 10th year and loses sig-

nificance thereafter. This suggests that the whole SO

averaged SST is less predictable than the WS averaged

SST. Note that the WS is the main deep convection re-

gion in the CM2.1 model, which acts as a window con-

necting the deep ocean signal to the surface and thus

local SST has longer memory and predictability than

other places. This is also why SST change associated

with the AABW cell fluctuation has its maximum value

over the WS (Fig. 2b).

We further show in Figs. 5a–c the PPP spatial map of

SST averaged over the 10 ensemble experiments in the

first, second, and third prediction period. Averaged over

the first decade, the most predictable regions appear

in the North Atlantic (Labrador Sea), the Nordic Seas,

and the SOWS (Fig. 5a). These high PPP regions coincide

with the model’s deep convection sites where the deep

ocean long memory can be transmitted to the surface.

Over the SO, the PPP value quickly drops beyond the

WS. Obviously, the PPP value averaged over the WS

exceeds that averaged over the whole SO, in agreement

with Fig. 4. The PPP value of the second decade is ev-

erywhere less significant than that of the first decade (cf.

Figs. 5a and 5b). However, the predictability remains

significant in part of the Labrador and Weddell Seas,
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indicating multidecadal predictability of SST in these

areas. In the third decade, the PPP value further de-

creases everywhere (Fig. 7c). The North Atlantic SST

totally loses its predictability, while the predictability is

still significant in a small area within the WS. This sug-

gests that SST has a longer predictability over the WS

than that over the North Atlantic. The SST predict-

ability over the SO and North Atlantic in CM2.1 model

originates from oscillatory characteristics of the AABW

cell and AMOC, respectively. The AABW cell has a

longer period than that of AMOC (80 vs 20 yr), and thus

the former has a longer predictability than the latter.

We also compare the PPP spatial pattern with the

diagnostic potential predictabilitymap of decadalmeans

SST calculated from the control run (cf. Figs. 5a–c and

Figs. 5d–f). The DPP pattern in CM2.1 model was al-

ready shown in our previous paper, which attempts to

quantify the fraction of long-term predictable variance

(10-, 20-, and 30-yr averaged SST) with respect to the

total variability. The high predictability regions

identified by PPPmethod coincide to some extent with

those of highest DPP scores. These regions mainly

include the convection sites: North Atlantic Ocean

and SO. There are also some discrepancies in the

North Pacific Ocean. The SST predictability over the

North Pacific Ocean identified by PPP is much weaker

than those over the North Atlantic and SO. The DPP

method, however, shows that the North Pacific west-

ern subpolar SST predictability is comparable to

(much larger than) that over the SO (North Atlantic).

The reason for these differences remains to be clari-

fied in future. The similarities between the high pre-

dictability region (WS) identified by two approaches

(PPP and DPP) (Fig. 5) and the region (WS) signifi-

cantly sensitive to the low-frequency AABW cell

fluctuations (Fig. 2b) further confirm that the SO internal

SST predictability arises from the deep convection

memory.

FIG. 4. As in Figs. 3a–j, but for the (a)–(c) Weddell Sea (WS) (758–558S, 528W–308E) and (e)–(g) SO (508–708S,
08–3608E) averaged SST trajectories initialized in year 1870, 1905, and 1945. (d),(h) As in Fig. 3l, but for the PPP of

WS and SO averaged SST anomalies.
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The AABW cell fluctuations are also associated with

the WS subsurface temperature and Antarctic sea ice

changes (Figs. 2c,d). These two fingerprints are expected

to have higher skill than the SST, since they are less af-

fected by the surface atmospheric perturbations. Consis-

tent with our physical understanding, the subsurface

temperature over the WS and Antarctic sea ice trajecto-

ries in three ensembles are out of phase with the SST and

AABW cell fluctuations (Figs. 6a–c and Figs. 6e–g). The

ensemble means generally follow the variations of the

control run. Compared to SST, the trajectories of these

two variables are much smoother and the ensemble

spreads are much smaller (cf. Figs. 6 and 7). Accordingly,

PPP shows high skills for the subsurface temperature and

sea ice, comparable to that of theAABWcell (Figs. 6d,h).

Using perfect model predictability experiments, we find

that the internal SO climate fluctuations in the CM2.1

model, including SST, ocean subsurface temperature, and

Antarctic sea ice, are predictable up to a decade or more.

These decadal predictabilities primarily arise from the

oscillatory characteristics of deep convection over theWS.

It is important to keep in mind that we have assessed the

upper limit of the AABW cell predictability as well as its

climate signatures when we apply it to reality, since we

assume the coupled model here is perfect and could be

perfectly initialized with three-dimensional observational

fields. Actually, this is impossible. The CM2.1 model has

significant biases over the SO compared to observations

(Delworth et al. 2006). Long-term observations are also

rare over the SO. In the next section, we attempt to ex-

amine the SO prediction skill in a real CM2.1 decadal

forecast system that is initialized by ECDA reanalysis.

Although the reanalysis data over the SO are not perfect,

especially before the satellite era starting in 1979, the fol-

lowing analysis may give some indications as to where and

to what extent skillful decadal forecasts might be possible.

FIG. 5. PPP of SST averaged over the 10 ensemble experiments and the (a) first, (b) second, and (c) third pre-

diction decade. Diagnostic potential predictability (DPP) of SST based on (d) 10-yr, (e) 20-yr and (f) 30-yr means.

The shading only shows values significant at 95% significance according to the F test.
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5. Prediction skill in the decadal hindcast run

a. Skill assessment of the Southern Ocean SST

With regard to the relative reliability of SST data in

reanalysis/observation, we first look at the SST pre-

diction skill in the hindcast run. Figure 7 shows the

correlation coefficient of SST anomalies between the

CM2.1 hindcasts and ECDA reanalysis at each grid

point as a function of lead time from 2 to 10 years over

the period 1961–2014 (left panels) and 1980–2014 (right

panels). Consistent with previous studies (e.g., Yang

et al. 2013), SST anomalies over the North Atlantic

subpolar region can be predicted up to a decade in ad-

vance, while the North Pacific SST shows lower pre-

diction skill (Figs. 7a–e). Around the SO, the hindcasted

SST variations are significantly correlated with the

ECDA with several years lead time, with a maximum

over the WS along with a secondary maximum north of

the Ross Sea (Figs. 7a–e). These significant predictive

skills in the SO SST suggest that initialization enables us

to predict the SO SST on decadal time scales. The SO

prediction skill is still apparent if we only examine

hindcasts from the relatively short satellite era (Figs. 7f–j),

albeit with a somewhat lower correlation after 6-yr lead.

We also assess the predictive skill using ERSST data and

find similar results (not shown).

We show in Fig. 8 the area averaged SST time series

for the 1961–2014 period as well as their prediction skill

over theWS and SO, respectively. Figures 8a and 8b show

that the recent negative SST anomalies over the SO are

retrospectively well predicted by the 5-yr mean initialized

hindcasts. The correlations over the WS are all above 0.6

at lead 1–10 years and significant at the 90% confidence

level (Fig. 8c). Moreover, these hindcast skills are higher

than persistence, demonstrating the important role of

initialization for these predictions. The SO averaged time

series exhibit less prediction skills than that in the WS

after 6-yr lead (Fig. 8d), consistent with Fig. 7. The cor-

relation gradually decreases as the lead time increases and

the significance is lost after 7-yr lead. We also use the

FIG. 6. As in Fig. 4, but for the (a)–(d)WS averaged subsurface temperature (8C) at 850m and (e)–(h) Antarctic sea

ice extent (1012m2).

5196 JOURNAL OF CL IMATE VOLUME 30



mean square skill MSSS to measure the prediction skill.

The MSSS shows positive values in all lead years for the

WS and in the first seven lead years for the SO, indicating

an improved prediction skill using the initialized model

relative to the uninitialized climatology. Again, the SO

SST prediction skill after 1980 shows similar results com-

pared to the whole period discussed here (not shown).

b. Possible mechanisms explaining the successful
prediction

The SST prediction skill in the decadal hindcast ex-

periments (Fig. 7) is very similar to the PPP skill esti-

mated from perfect model predictability experiments and

the DPP skill diagnosed from the control run (Fig. 5). All

FIG. 7. Skill in hindcasting internal SST variations in terms of anomaly correlation coefficients at each grid point.

Correlation between the hindcast data initialized 2–10 yr in advance and ECDA reanalysis from (a)–(e) 1961–2014

and (f)–(j) 1980–2014. The external forcing is removed by subtracting ensemble mean SST of the uninitialized run

from the total signal in both hindcasts and ECDA. The black dots overlapped on the shading indicate the corre-

lations are significant at 90% confidence level based on a bootstrap approach using 1000 sets of reordered values.
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three methods show the highest skill over the WS where

internal SST variability is very sensitive to deep convec-

tion or AABW cell fluctuations. Thus, it is reasonable to

speculate that the SO SST skill in the decadal hindcasts

may arise from the correct synchronization of the slowly

evolving AABW cell internal variability in the model.

For theAABWcell, we focus on the period 1980–2014

when observations are somewhat more reliable than

earlier periods. The AABW cell derived from the

ECDA shows a decreasing trend in recent decades

(Fig. 9a), which corresponds to a weakening of deep

convection, thereby isolating the subsurface warmwater

from the surface, leading to a cooling trend for SST

(Figs. 9b,c). Figure 9a shows that the 7-yr mean initial-

ized AABW fluctuations agree well with that in ECDA,

with ensemble spread small compared to the signal. This

7-yr hindcast skill is largely due to capturing the long-

term decreasing trend, with weaker AABW formation

after 1995 than before 1995. The SST hindcast skill over

the WS and SO with a 7-yr lead is thus consistent with

predicting AABW cell variations (Figs. 9b,c). Consis-

tent with the SO SST, Antarctic sea ice shows an ex-

pansion that can be predicted approximately 7-yr in

advance (Fig. 9d). This is again very likely to be attrib-

uted to skill in predicting theAABWcell variations. The

important role of initializing AABW is further in-

vestigated by examining predictions started in 1993

(Fig. 10). The AABW is initialized as anomalously weak

in the hindcast runs (Fig. 10a), corresponding to weak

surface cooling and shoaled mixed layer depth

(Figs. 10c,e). The AABW anomaly persists for several

years due to the large inertia of the ocean (Fig. 10b),

which is also indicated from mixed layer depth change

(Fig. 10f). The system successfully predicts negative

(positive) temperature anomalies in the surface (sub-

surface) in the following years (Fig. 10d).

c. Climate impacts

To explore the predicted climate impacts associated

with the SO cooling trend, CM2.1 hindcasts that predict a

FIG. 8. Time series of 5-yr mean initialized hindcasts (1961–2014) of SST anomalies (8C) averaged over the

(a)Weddell Sea (758–558S, 528W–308E) and (b) SouthernOcean (708–508S, 08–3608E) comparedwith ECDA(black

line). (c),(d) Anomaly correlation andmean squared skill score (MSSS) between the hindcasted SST and ECDAas

a function of lead time. The persistence skill is also shown.

5198 JOURNAL OF CL IMATE VOLUME 30



cold SST (1996–2010) are compared to earlier hindcasts

(1980–91). We present here the averaged results from

forecast years 2–7 to highlight where the impact of ini-

tialization remains beyond year 1.As suggested byRobson

et al. (2013), comparing differences between hindcasts

for the same lead times removes the need to do bias cor-

rection. Subtracting the uninitialized historical forecast

from the initialized hindcasts and observations removes

an estimate of the externally forced trend and is better

able to reveal the impact of initialization. In austral winter

[June–August (JJA)], CM2.1 hindcasts predict broad sea

ice increases over the SO (Fig. 11a). There is an excep-

tion over the northern Weddell Sea where the sea ice re-

sponse shows a decrease. The sea ice decrease is primarily

associated with the warm temperature advection by the

anomalous northwesterly wind (see the sea level pressure

in Fig. 11a). Cold surface air temperature (SAT) anom-

alies are predicted over most of the Antarctic continent

(Fig. 11c). The warm SAT around 308W is due to warm

advection from the north, and coincides well with the sea

ice decrease. The sea ice and SAT predictions are con-

sistent with the negative SST anomalies during the same

period in themodel (Fig. 9c). Further inspection finds that

the predictions of sea ice and SAT are generally in

agreement with those observed in the SO (Figs. 11a,c vs

Figs. 11b,d), although the magnitudes in the hindcast

simulations in many places are relatively small.

6. Discussion and summary

In this study, we use prognostic methods to estimate

the decadal predictability of SO deep convection and its

associated climate impacts, which complement our

previous paper that uses a diagnostic method to examine

the SO SST predictability. We conduct perfect model

predictability experiments using the GFDL CM2.1 cli-

mate model, with 10 ensembles starting from 10 differ-

ent initial states. Results show that SO deep convection

(or AABW cell) fluctuations, associated with internal

climate variability, are potential predictable up to 20

years in advance. The associated WS subsurface tem-

peratures and Antarctic sea ice have comparable po-

tential predictability as the AABW cell. These two

fingerprints are relatively easy to monitor by direct

measurements, thereby providing another approach to

assess current and future variability of the SO deep

convection. A close relationship between the AABW

cell and SST also exists. Because of the close contact

with high-frequency atmospheric perturbations, the SST

variability over the WS and SO is less predictable, but

still predictable for lead times up to a decade. Despite

the limited number of perfect model ensembles, the

AABW cell and its associated climate impacts seem to

have higher predictability when initialized from mature

phases of the internal variability as compared to those

initialized from intermediate conditions. This result is

consistent with the diagnostic analysis in our previous

paper but needs to be confirmed in subsequent studies

by more experiments specifically designed to investigate

the role of initial conditions.

FIG. 9. Hindcast/forecast 7-yr (lead 1–7) means of selected in-

ternal time series, compared with ECDA/observation. (a) AABW

cell strength (Sv). (b) WS averaged SST index (8C). (c) SO aver-

aged SST index. (d) Antarctic (south of 558S) sea ice concentration
(%). Red lines indicate time series in reanalysis, while blue lines

denote the hindcasted time series with ensemble spread (shading)

overlapped. Yellow shading begins in 2016, indicating the start of

the true forecast period. AABW and SST are from ECDA, sea ice

from HadISST, and wind stress from NCEP.
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The perfect ensemble experiments provide an upper

limit of the SO climate predictability since we assume a

perfect model and perfect knowledge of the initial

conditions. Indeed, the GFDL CM2.1 model has sig-

nificant biases over the SO compared to observation.

The approximately 80-yr internal cycle of the AABW

cell in the CM2.1 model also greatly influences the

predictability time scale. Different models could have

different time scales of internal variability over the SO,

such as the 300-yr time scale variations in the Kiel Cli-

mate Model (Martin et al. 2013).

In reality we do not have perfect observations with

which to initialize prediction models. Thus, to what ex-

tent we can apply our conclusions to the real climate

system remain a big challenge. Regarding these issues,

we have extended our perfect model prognostic study to

real decadal hindcast/forecast experiments that are ini-

tialized from observations through an ECDA reanalysis

system. This at least can give us some indications as to

where and to what extent skillful decadal forecasts

might be possible. We found that the internal variability

component of SO SST fluctuations can be predicted

several years in advance. The success of the hindcast

predictions, especially of the recent SO cooling that

appears in both observations and the ECDA analysis, is

largely due to initialization of the strength of AABW

formation. The GFDL CM2.1 hindcasts also predict

significant changes in Antarctic sea ice and SAT asso-

ciated with the recent SO shifts, including both hemi-

spheric mean and detailed spatial pattern, which

generally agree with the observed changes. In contrast

to the long-term expansion trend (Fig. 9d), the Antarctic

sea ice extent in the last three months shows a record

low. This short-termmonthly sea ice changes seem to be

more related to the anomalous wind than deep con-

vection changes, which could be examined in our sea-

sonal forecast system and will be our future work.

We have also made true predictions for the next de-

cade (2016–25). We find that AABW formation is pre-

dicted to be weak for the next few years but has a

tendency to transition to a neutral state (Fig. 9a). Thus,

the negative SST anomalies and above normal sea ice

over the SOmaywell continue for the next several years,

although the amplitude of the anomalies will tend to

decrease (Figs. 9c,d). In brief, the conclusions from de-

cadal hindcasts/forecasts are generally consistent with

FIG. 10. The (a) first year and (b) 2–6-yr averagedGMOC (Sv) anomalies inGFDLCM2.1 hindcasts initialized in

year 1993. The contour imposed on the shading denotes the long-termmeanGMOC. The dashed gray (solid black)

contour denotes negative (positive) streamfunction (contour interval 2 Sv). (c),(d) As in (a),(b), but for zonal mean

temperature (8C). (e),(f) As in (a),(b), but for mixed layer depth (m).
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what we obtained from the perfect ensemble pre-

dictability experiments. This provides us some level of

confidence that some characteristics and skills that ap-

peared in the current paper have some basis in reality.

While past observations of the strength of AABW

formation are sparse, our results suggest that substantial

decadal predictive skill could be realized with adequate

observations of the subsurface SO. The fact that the

decadal predictions shown here have meaningful skill

suggests that our initialization system may have captured

some aspects of the time-varying rate of AABW forma-

tion, despite the paucity of observations. Further, our

FIG. 11. Comparison of the observed and predicted (years 2–7) (a),(b) sea ice and (c),(d) surface air temperature

(SAT) before and after the mid-1990s cooling of the SO, e.g., the difference of year 2–7 mean sea ice (%) and air

temperature (8C) in hindcast initialized in 1996–2010 minus year 2–7 from hindcast initialized from 1980–91. The

observed difference is taken from the 6-yr running mean in the same period. Difference is thenmade relative to the

same difference in uninitialized run. The contours overlapping on the shading denote the sea level pressure (SLP)

difference. The contour interval is 0.3 hPa for the SLP [solid (dashed) line denotes positive (negative) SLP]. The

observed sea ice is fromHadISST, SAT fromGISS surface temperature analysis, and SLP fromNCEP. The shading

inside yellow contours indicates that the sea ice–SAT difference is significant at a 90% confidence level.
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results suggest that improved and sustained measurements

of the subsurface SO could yield substantial benefits in

terms of contributing to successful decadal predictions of

the SO.

Given the importance of ocean circulation initializa-

tion in the hindcast skills, the SO predictability is very

likely dependent on the ocean model resolution. Note

that the ocean model in CM2.1 is approximately 18, and
it therefore cannot explicitly simulate mesoscale eddies

in the SO. In addition, the initial conditions fromECDA

we used in the hindcast experiments have considerable

uncertainties, especially arising from changing obser-

vational networks. Thus, it would be very useful to re-

peat such hindcast experiments with other models and

initialization methods to assess the robustness of the

results, especially using models with substantially higher

ocean resolution.
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